
0018-9162/98/$10.00 © 1998 IEEE50 Computer

A
lthough producing a finished microproces-
sor takes the effort of many engineers in
many disciplines, the first step requires that
an architecture team sketch out the organi-
zation of a better/faster/cheaper chip.

This effort involves searching for a solution to a
design problem in a space of possible solutions. Some
solutions in the space are bad, some are better, only a
few are satisfactory. The goal is to find the solution
that satisfies the product goals. The architecture team
must invent and refine the design until it converges on
an implementable architecture.

In designing Digital’s Alpha processors, our teams
are guided in large part by an executable performance
model. The model allows us to measure the effect or
utility of each invention and improvement. For exam-
ple, using this model allowed us to answer the question
How much faster does a benchmark program run if
we double the size of a branch predictor table? The
same model helped suggest areas for further develop-
ment by answering questions like Why does bench-
mark X spend so much time in subroutine Y?

In this article, we describe the performance model
that guides one of our current Alpha processor design
projects.

GOALS OF MODELING
Designing and implementing a processor perfor-

mance model is a substantial engineering task on its
own. As with most design efforts, a successful design
must reconcile conflicting requirements.

First, the model must be extremely flexible. There
ought not be any intrinsic assumptions built into the
modeling language or tools that inhibit searching the
solution space. For example, a modeling infrastruc-
ture that does not allow us to simulate out-of-order
execution would not be useful in designing a flexible,
modern, high-performance microprocessor.

Second, the model must be fast. Typically we execute
several different benchmark programs for each experi-

ment, and each experiment in turn may simulate several
hundred million instructions. A simulator that only exe-
cuted 1,000 instructions per second would take more
than a day to simulate the execution of each benchmark
program. Given our successive-refinement approach, it
is important to provide experiment results in hours, not
days. Our goal was to maintain a simulation rate of
approximately 50,000 instructions per second. In prac-
tice, we achieve about 10,000 instructions per second, so
a typical benchmark run takes about three hours on a
modestly configured Alpha workstation.

Third, the model must reflect reality. Caches are of
finite size. Memory accesses take time. The number of
ports into or out of a register file is fixed, and such
ports are costly. At the start of our modeling effort, we
ignore many of these reality issues to get the model up
and running. As we explore the space, however, the
model starts to more faithfully reflect our design
choices. At the end of our search, we want the perfor-
mance model to match the behavior of the register-
transfer-level (RTL) model as closely as possible for
key performance metrics. In this way, we can detect
performance bugs in the RTL description that would
not be detectable with normal verification procedures,
since most design verification tests detect wrong
answers and not unacceptably slow answers.

Of course, accurate models tend to be slower than
more abstract models. Flexible models are slower than
rigid ones. As the model becomes less flexible and more
faithful to reality, exploring radical new ideas becomes
harder. It is often difficult to describe new structures or
policies in ways that fit into what has become a very
complex piece of software.

HOW THE MODEL WORKS
Most performance-modeling experiments boil

down to one question: Is processor configuration X
faster than Y? We answer this question by using a
benchmark program as a stimulus to the performance
model and measuring the model’s response.

Performance
Simulation of an
Alpha Microprocessor
If there ever was a time when the architecture of a high-performance
microprocessor could spring completely formed from the mind of a single
engineer, that time has passed. Modern microprocessor architectures
are the result of invention and progressive refinement by a team. The
team developing a future Alpha processor was guided by the performance
model described here.

Matt Reilly
Digital
Equipment
Corp.

John
Edmondson
Analog
Devices Inc.

Co
ve

r F
ea

tu
re

.

May 1998 51

We could approach the problem by building a model
that actually executed each instruction in the bench-
mark exactly as the target design might execute it. In
this case, the performance model would faithfully rep-
resent the intended architecture down to the behavior
of the functional units. On the other hand, such a model
would be needlessly slow and might be very hard to
modify. Writing a program that correctly interprets each
instruction is also time-consuming. If this feature were
included in the performance model itself, small modi-
fications of the model might cause bugs in the inter-
preter. In the course of a design, we make many changes
to the model: Time spent debugging the interpreter
would be better spent on designing new experiments.

Atom and Aint
Rather than executing each instruction in a detailed

processor model, we run an instrumented version of
the benchmark program on a standard Alpha work-
station, using an instrumentation tool called Atom.1

We could alternatively use a separate instruction set
emulator called Aint2 to interpret a benchmark pro-
gram. The instrumentation or the emulator transforms
the instructions from the benchmark program into
stimuli for the abstract performance model.

Atom was developed by Alan Eustace and Amitabh
Srivastava at Digital’s Western Research Laboratory. It
allows an experimenter to insert software probes into
a program compiled under the Digital Unix operating
system. Probes can be inserted before or after any (or
even all) instructions in a program. When executed, the
probes can then pass information about the state of the
processor to a trace file or another program. In our case,
the probes pass information to our performance model.

Aint was written by Dirk Grunwald and Abhijit
Paithankar based on work by Jack Veenstra and
Robert Fowler on the MINT program.3 MINT was
an interpreter for Mips assembly language programs.
Aint is an interpreter for Alpha assembly language
programs. Aint maintains a record of the program-
mer-visible state of an ideal Alpha processor. Although
Aint interprets each instruction, it does not model a
processor’s microarchitectural structure: It does not
simulate the detailed behavior of an actual processor.
Nor does Aint maintain processor states that are not
visible to a programmer; such states support features
like branch prediction and out-of-order execution.

The performance model, on the other hand, main-
tains very little of the processor’s architectural state. It
focuses on maintaining, in an abstract form, the
nonarchitectural state necessary to support specula-
tion and scheduling. For this reason, the combination
of Aint and our abstract performance model is faster
than a performance model that describes each of the
processor’s functional units in detail. The partition-
ing also allows an experimeter to make changes to the

performance model without worrying that the changes
might introduce bugs into the instruction interpreter.

In the simplest case, we use Atom to place software
probes into the benchmark program. This modifies
the program so that it calls a subroutine before
branch instructions and every load and store instruc-
tion. These instrumentation subroutines provide a
stream of instructions and memory addresses to the
performance model.

Figure 1 shows the model’s top-level structure.
The Atom-inserted instrumentation code collects
information on the program’s flow, enqueues the
information in large “chunks” of a thousand or more
instructions, and then passes these chunks to the per-
formance model. A token representing each executed
instruction passes through the major pipeline stages
represented in the model.

Procedure
For the C fragment shown in Figure 2a, for exam-

ple, the compiler might generate the instructions in
Figure 2b. The Atom instrumentation software would
insert calls to special routines by modifying the

BlockEntry/Load/Store
instrumentation

Original test program

Enqueue instructions
by block

Instruction fetch unit

Instruction scheduler

Execution unit

Instruction retire unit

Atom
instrumentation
tool

Performance
model

Figure 1. Flow
diagram showing
Atom code
instrumentation and
the performance
model structure.

.

52 Computer

instruction sequence, as shown in Figure 2c. The spe-
cial routines notify the performance model of each
major event in the benchmark program’s execution.
When the program enters a new basic block, the
BlockInst subroutine informs the model of the address
associated with the start of the new block of instruc-
tions. For load and store instructions, the LoadInst
and StoreInst routines inform the model of the loca-
tion of the instruction and virtual address that will be
loaded from or stored to. As each branch executes,
the BRInst routine determines the branch’s target
address and whether the branch is taken. BRInst then
sends this information to the model.

With information from the four instrumentation
routines and an array containing all the instructions in
the original benchmark program, the Enqueue-
Instructions section can generate all the relevant stim-
uli for the rest of the model. Instrumenting each load
and store instruction tells the model which virtual
address will be accessed. This allows accurate model-
ing of cache and main-memory behavior without hav-
ing to actually interpret the instruction stream inside
the performance model.

For example, executing the load instruction in a
loop passes the effective source address and the
instruction to the performance model’s input queue.
When the instruction reaches the head of the queue,
the model sends it to the instruction fetch unit first.

If the fetch unit is not waiting to service an instruc-
tion cache miss or to correct a branch mispredict, the
load instruction is passed to the scheduler. Otherwise,
the model notes that the instruction stalls in the
pipeline for the amount of time required to service the
miss or to resolve the branch. Once the instruction
arrives at the scheduler, it waits until its issue condi-
tions have been satisfied before advancing to the exe-
cution unit. (An instruction does not go to an execution
unit until the scheduler determines that all of its input
operands will be available in the execution pipeline.)

The model also records this wait time. Once the
load instruction passes to the execution stage, its effec-
tive address is sent to the memory and cache model-
ing routines. The model records the amount of time
the instruction spends in each stage of the memory
access pipeline, accounting for data cache misses,
memory access time, and other effects. Finally, the

instruction passes to the retirement unit. At each
stage of execution, the model records the time spent
by the instruction at that stage and the resources the
instruction consumes.

Handling speculative instructions
The Atom instrumentation scheme only informs the

model of instructions that are actually executed.
Modern high-performance microprocessors frequently
“execute” instructions on speculation. That is, when
the processor encounters a conditional branch in a pro-
gram, it makes an informed guess as to whether the
branch will be taken or not taken. It then executes the
instructions along this speculative path. Sometimes the
guess is wrong, in which case the processor will roll
back the machine’s state to what it was just before the
misprediction and restart along the correct path. In the
meantime, however, resources are consumed by
instructions along the incorrectly chosen path. We say
that the instructions fetched as the result of a mispre-
dicted branch are along a bad path.

In our performance model’s initial version, the
instruction fetch unit would stall any time it was
informed of an unexpected block. (That is, it would
stall when the branch predictor guessed incorrectly.)
The instruction fetch unit would delay all further
instructions until the execution unit had encountered
the mispredicted branch and resolved it.

This, of course, ignores the fact that instructions
from the bad path consume resources. In an out-of-
order-issue machine, they can even delay the resolu-
tion (execution) of the mispredicted branch that
caused the bad instructions to be fetched.

If we had ignored this effect, we might have settled
on an inadequate solution. Instead we use a second
mechanism for introducing stimuli to the performance
model: an instruction interpreter for Alpha code called
Aint. Modeling experiments do not require modifi-
cations to Aint, so new experiments should not intro-
duce bugs into the interpretation software.

In Aint mode, the part of the performance model
that describes the instruction fetch unit directs Aint
to interpret basic blocks of instructions. The Aint
model then stimulates the rest of the model using
information it acquired while interpreting each
instruction in a basic block. Instructions provided by

for (i=0;i<10; i++) {
a[i]=i*3 + a[i];

}

(a)

CLR R0
LOOP: MUL R0,#3,R1

LDL R2,(R5)
ADDL R2,R1,R3
STL R3,(R5)
ADDL R5,#4,R5
ADDL R0,#1,R0
CMPL R0,#10,R6
BLT R6,LOOP

ENDLP:

(b)

CLR R0
LOOP: call BlockInst(LOOP)

MUL R0,#3,R1
call LoadInst(R5)
LDL R2,(R5)
ADDL R2,R1,R3
call StoreInst(R5)
STL R3,(R5)
ADDL R5,#4,R5
ADDL R0,#1,R0
CMPL R0,#10,R6
call BRInst(R6,BLT,LOOP)
BLT R6,LOOP

ENDLP:
call BlockInst(ENDLP)

(c)

Figure 2. Instrument-
ing a program for the
performance model:
(a) C fragment is
transformed by the
compiler into (b)
assembly code. Atom
software creates (c)
instrumented assem-
bly code by inserting
calls to special
routines that monitor
program execution.

.

May 1998 53

• the average number of instructions executed per
machine cycle.

Of course, these numbers provide no insight into
why design A is better than B. For this reason, the
model also reports a dazzling variety of statistics on
functional-unit usage, time spent in each major
pipeline stage for each instruction type, frequently
executed code sequences, branch prediction and other
prediction accuracy reports, lists of hard-to-predict or
problematic instructions, and even statistics on the
performance of the model itself.

At times, we use the model to produce traces of
machine activity on a cycle-by-cycle basis. Most often,
the model presents these traces in a textual form as a
log of events. We also have a graphical presentation
tool that draws “waterfall” or pipeline diagrams
showing the path of each instruction through the
pipeline stages over time. Figure 3 shows a diagram
of pipeline activity for Digital’s 21264 Alpha proces-

Aint follow the same path through the pipeline that we
described earlier. Using Aint, the branch predictor in
the performance model can create speculative instruc-
tion streams that are used to stimulate the model. By
interpreting the speculative instructions in Aint, the
model has access to the memory addresses and proces-
sor state that bad-path instructions might generate. Aint
can then undo the effects of these bad-path instructions
when a mispredicted branch is finally resolved.

The end goal of the architectural development effort
is not, however, a model. The end goal is the definition
of a microarchitecture. What information does the
team extract from the model to advance this effort?

WHAT THE MODEL TELLS US
At the conclusion of each benchmark run, the

model reports

• the number of cycles required to execute the sim-
ulated instructions and

Branch instruction
 executes

Branch mispredict Instruction
trap is signaled cache fill

Branch instruction
is fetched

Instruction
fetch resumes

Bad-path
instructions
shown in gray

Mispredicted
branch instruction

Figure 3. Graphical
presentation of
pipeline usage and
instruction paths.

.

54 Computer

sor. It was produced by a tool similar to the model we
are now using to develop the next-generation Alpha
processor.

The model also supports a debug trace mode. In this
mode, the model generates a very detailed, cycle-by-
cycle log of activity for each major section of the
processor. Users can select a level of detail at runtime
by using a command line option. This feature proved
extremely useful in analyzing performance problems
as well as in debugging the model.

EXAMPLE EXPERIMENT
The power and flexibility of the simulator is best

illustrated with a simple example. Suppose we want to
determine the issue width of a new processor—the
maximum number of instructions that can be sent to
the processor’s functional units for execution in any
one cycle. Cost and complexity considerations force a
compromise. While an issue width of 100 might prove
blazingly fast for some applications, providing the nec-
essary paths among 100 functional units would prob-
ably prove infeasible in current technologies. On the
other hand, a small issue width might prevent an
architect from taking advantage of advances in
instruction fetch bandwidth.

The object of our example experiment is to find a
compromise. Figure 4 shows the relationship between
issue width and execution time, if other factors are
equal. This graph suggests that an issue width of Y
will result in a much faster processor than an issue
width of X. (The optimal issue width depends strongly
on the effective instruction fetch rate and on the work-
load characteristics.) The graph suggests that an issue
width of Z does not offer much of an improvement

over Y. Since Y is near the knee of the curve, the opti-
mal choice is probably closer to Y than Z.

There are several ways to find this knee. Obviously,
we could parameterize the performance model so that
the issue width was programmable. We would then
simulate the execution of each benchmark in our suite
and build a graph like that shown in Figure 4.

This approach requires performance of one mea-
surement experiment for each point along the issue
width axis. We often used an alternative arrangement
that required much less runtime. First, we set the
model parameters so that the issue width is very
large—for all practical purposes, infinite. Second, we
assume a perfectly predicted instruction stream. (That
is, we ignore the effects of branch misprediction.)
Asking “What is the probability that the processor
will issue N instructions in a cycle?” yields additional
insight into program behavior. Figure 5 shows a his-
togram that answers this question. We could gather
the histogram for just one benchmark or collect it over
the entire benchmark set.

Figure 5 shows that for this hypothetical workload
there are many cycles in which no instructions are
issued. Further, during a slightly larger number of
cycles, N instructions were ready to issue. While we
could calculate an approximation of Figure 4 from the
data in Figure 5, the histogram shows the bimodal char-
acteristic of instruction-level parallelism in bold relief.
The gap between the two peaks in the graph indicates
that the execution units are starved for data-ready
instructions. Since we are assuming “perfect” instruc-
tion stream behavior, these gaps are likely caused by
long-latency operations that either the processor’s
instruction-scheduling technique or the compiler could
not hide. Such evidence might encourage us to explore
alternate algorithms for scheduling or to find other
ways to ameliorate the effects of long-latency opera-
tions. In any case, Figure 5 suggests that an issue width
greater than N would offer little benefit.

While part of the architecture team is performing
issue width experiments, another part is refining a
solution to the instruction-fetch and the instruction-
stream-management problems. After integrating this
work into the performance model, the team repeats
the issue width experiments. The histograms gener-
ated by the new experiments will reflect the impact of
nonideal control flow prediction and instruction cache
behavior.

After we introduce the more complex instruction
stream model, gaps in the issue histogram could result
from several causes: instruction cache misses, branch
misprediction, data cache misses, or inefficient sched-
uling decisions, for example. Untangling the causes of
the wasted execution slots that these gaps indicate
would be nearly impossible without the model’s
detailed statistical reports. For this reason, the model

Issue width

Ex
ec

u
ti

o
n

 t
im

e

X Y Z

Figure 4. Execution time versus issue width.

.

May 1998 55

is instrumented such that each instruction can record
in histograms or trace files the time it spends at each
stage in the execution pipeline. Further, each module
or pipeline stage is instrumented to gather cumulative
use and delay statistics that the model reports at the
end of an experiment. In many cases, though, we relied
on the model’s detailed cycle-by-cycle trace records to
explain experimental results.

In trace mode, the model prints information relat-
ing to each of the major pipeline stages in the proces-
sor for every cycle within a user-selectable range. The
report describes the instructions at each pipeline stage,
the dependencies between instructions, and the
resource requirements for each instruction. From this
information, we can often determine the cause of
pipeline stalls, wasted issue cycles, and other perfor-
mance problems.

Eventually, we use the histograms and other infor-
mation to choose an issue width. After making this
choice, the team models and refines the instruction
scheduler design. Comparing the benchmark execu-
tion on the refined model to earlier experiments veri-
fies that our choice resulted in a reasonable balance
between complexity, cost, and performance.

HOW DID WE DO?
The issue width studies and hundreds of experi-

ments like them supported our design decisions and
tested our modeling techniques. Although we are
pleased with the results of our modeling effort, the
original performance model goals forced some com-
promises along the way.

Flexibility
Flexibility was a primary goal of the model devel-

opment effort. Several choices contributed to making
the model as flexible as it is.

First, we chose a code-management system that
allowed many developers to work on the model at the
same time. (We chose a package called CVS—
Concurrent Versions System—which provided a layer
on top of the standard Unix Revision Control System.)
Using this system, a developer checks out a current
copy of the model and modifies it. Later, these changes
can be integrated back into the group’s source pool.

CVS provides options that allow developers to cre-
ate their own branches off the main source tree. At a
later time, these branches can be reintegrated into the
main development “trunk.” The performance model
(after more than a year of intense development involv-
ing about 20 people) includes between 50,000 and
100,000 lines of C. While not a large program com-
pared with most industrial software engineering
efforts, the combination of the program’s size and its
malleability often made reintegration into the main
trunk a difficult task.

Second, we made extensive use of conditional com-
pilation. When a developer inserts changes into the
model, the changes are wrapped in conditional-com-
pilation brackets that allow the compiler to ignore or
include the changes at the option of later users. On
the one hand, this produces some ugly code; on the
other hand, it allows us to see what paths others have
explored and use their earlier work. Our reliance on
conditional compilation would probably spell disas-
ter for an effort aimed at shipping a production pro-
gram to outside customers. Our goals did not include
shipping the performance model; it is an exploration
tool. Time spent on fancy fasteners is wasted when
duct tape will do the job.

We implemented our model in C. Certainly there
are other languages tailored specifically for perfor-
mance modeling, but C had a few hard-to-overlook
advantages. For one, all of the developers on our team
had extensive experience with the language. For
another, C neither imposes any specific constraints on
the style or mechanics of the simulation environment,
nor is it biased toward any particular processor archi-
tecture. Finally, C is compatible with using Atom as
the benchmark instrumentation tool.

In the end, our modeling methodology has proven
sufficiently flexible to enable a wide range of experi-
ments and a fairly sizeable team of experimenters.
However, this flexibility was purchased at a cost in
complexity, speed, and fragility.

Accuracy
We worked hard to accurately model the effects we

thought were important. Along the way, we tested the
model to ensure that its more abstract parts did not
cause us to ignore important performance effects. In
the process, we learned quite a bit about modeling
techniques.

Number of instructions issued

Pe
rc

en
ta

g
e

o
f

to
ta

l c
yc

le
s

0 N

Figure 5. Instruction-level-parallelism histogram.

.

56 Computer

For example, a useful performance model
must account for speculation effects, and the
Aint option has been important for modeling
them. Contention between incorrectly specu-
lated instructions and instructions along the cor-
rect path represents substantial execution
overhead in some processor configurations.
Further, some bad-path recovery mech- anisms
may have a cost associated with them (in exe-
cution time) that is proportional to the number
of mispredicted instructions in the pipeline. If
our modeling methodology ignored mispre-
dicted instructions, we would not notice such
performance costs. Finally, mispredicted instruc-
tions can provide incorrect hints to various pre-
diction schemes or confound (or even improve!)

the predictors in other ways.
We also identified areas where accuracy is not

important. Specifically, operations that enter one end
of a pipeline segment and emerge from the other end
without causing side effects need not be simulated on
a cycle-by-cycle basis. Parts of the model are executed
on every cycle regardless of what is happening in the
processor (cycle-by-cycle simulation). Other parts,
however, are only invoked if there is something for
them to do (event-driven simulation).

Cycle-by-cycle simulation. In a cycle-by-cycle simu-
lator, every part of the simulator is invoked on every
cycle. Each part “wakes up,” looks at its surround-
ings, finds out what work it needs to do, and passes its
results to the next pipeline stage. This mimics our
understanding of how actual hardware works and is
a natural way to think about the processor. However,
many units in the model wake up and find nothing to
do for most machine cycles. For these units, writing in
a cycle-by-cycle style—though intuitive—can produce
very slow models.

Event-driven simulation. In an event-driven simula-
tor, work items are posted to an event queue at the
end of each simulation cycle. At the beginning of each
pass through the simulator, a scheduler removes items
from the front of the event queue (the queue is time-
ordered) and dispatches them to the appropriate rou-
tines. If the current simulation time is cycle number
350, and the first item in the event queue occurs at
cycle 400, then “simulation time” advances to cycle
400 before the simulator processes the first item.
Event-driven simulators tend to be very efficient in
terms of simulation versus execution time. Unfor-
tunately, they can also be very hard to write.

Our model uses an event-driven strategy in areas
where the function of the machine is extremely well
understood and unlikely to change. At the start of our
effort, the entire simulator was event-driven. In our
efforts to more faithfully model real effects, we mod-
eled those parts of the simulator that changed fre-

quently or were very complex in a cycle-by-cycle style.
This latter style improved modeling accuracy at the
expense of simulation efficiency.

Sanity checks. Although event-driven and cycle-by-
cycle simulation are important to ensuring accuracy,
nothing can replace careful checking. Our confidence
in the model comes, in part, from the fact that we
developers question every model result and pursue any
inconsistency. When the model produces a result that
is wildly different from what we expect, our eyebrows
go up. Developers must determine what caused the
result and fix any modeling errors.

We also included assertion checkers within the
model. A checker might, for instance, verify that an
instruction executed after it was fetched (not before)
or that an instruction that retires was not on a bad
path.

As a further check, we periodically review results
of well-understood test program runs and examine
trace logs and graphs, searching for inconsistencies
and surprises.

Speed
We started our modeling effort with a simulation

speed goal of 100,000 instructions per second on our
team’s compute server, a four-processor AlphaServer
8400 system. The initial pass of the model ran at about
50,000 instructions per second. As the model matured
and sprouted more features, the rate fell to about
10,000 to 20,000 instructions per second.

A decline in simulation speed is inevitable. Most of
our developers are focusing their efforts on architec-
ture, not high-performance programming. When the
choice is between a quick answer to the current prob-
lem or coding the model for maximum simulation per-
formance, we sacrifice simulation performance. In
addition, many performance optimizations produce
code that is very hard to read. While readability was
never a primary goal, it often wins out over simula-
tion performance.

We employed a few special-purpose tricks to
improve model performance in cases where the effort
was minimal and the return was great. In addition to
the event-driven simulation scheme and careful use of
Atom instrumentation hooks, we used benchmark
sampling techniques. These techniques capture only
the highlights of each benchmark without executing
each program in its entirety.

Skip mode. For most experimental runs, we ran the
simulator in skip mode, in which the simulator skips
several hundred million instructions into the applica-
tion. During this period, it keeps the cache and branch
prediction tables “warm”—that is, it trains them.
During this phase, the simulator processes about
700,000 instructions per second. When the skip phase
ends, the simulator switches into active mode and

We implemented our
model in C. Certainly

there are other
languages tailored

specifically for
performance

modeling, but C
had a few

hard-to-overlook
advantages.

.

processes the next 100 million instructions. At the end
of this phase, the simulator reports its information
and stops. An earlier analysis of each benchmark
determined how far into each benchmark the simula-
tor should skip. This allowed us to skip over initial-
ization phases that don’t reveal much about the
architecture’s behavior. For instance, the compress
benchmark from the SPEC95 suite spends a large part
of its first two billion cycles building the data array
that it will compress. Most processors will handle this
task efficiently. We would rather concentrate on the
part of compress that is difficult and unique to that
program.

Sampling mode. Almost every designer who has used
this technique has been unpleasantly surprised at one
point or another when an “uninteresting” part of a
benchmark was chosen as the stimulus and design
decisions were based on this bad stimulus. For this
reason, our simulator also has a sampling mode that
Tom Conte and others4,5 have suggested. In sampling
mode, our simulator takes three parameters. The first
is a number, A. The simulator will choose random-
number S from a uniform distribution from 0 to A. It
will then skip S cycles into the benchmark program.
The second number, W, is the length of the warm-up
period. After skipping S cycles into the program, the
simulator will execute W cycles while training the
caches and predictors, and filling the pipeline. During
this warm-up phase, the entire simulator is active but
collects no statistics. Finally the third parameter, C,
defines the number of cycles we execute while col-
lecting statistics. At the end of C cycles, the process
repeats itself in the skip, warm-up, and collect pattern
until the entire program executes.

This sampling technique gives us a statistical pic-
ture of the program’s behavior over its entire span
without running the whole program through the sim-
ulator. We also implemented a mode that reports the
statistics of each simulation interval separately. We
used this feature to choose the skip distance for day-
to-day skip-mode simulations.

WHAT WE LEARNED
Perhaps the most important lesson we learned is

that investing in a flexible simulation framework early
in a project returns dividends as the project matures.
Over the past year, we found that flexibility is not only
important, but possible. This flexibility allowed many
engineers to contribute to the design effort without
undue conflict or management overhead.

We also found that some problems do not fit well
into our basic performance-modeling scheme. As an
example, when testing ideas for branch predictors, it
is often useful to write a special-purpose simulator
that only tracks branch instructions. Such simulators
can be 50 times faster than our all-purpose model.

After settling on a branch predictor organiza-
tion by using such a simulator, we imple-
mented the algorithm in the full performance
model.

We found that event-driven simulation is only
somewhat successful. As the model matured,
the event-driven portion of the simulation time
amounted to just 35 percent of the total simu-
lation time. Even this part of the simulator is no
longer purely event-driven. Expressing the
behavior of a complex machine in an event-dri-
ven style can be extremely difficult.

On a few occasions “code rot” set in. (Older
portions of the model either cease to behave
correctly because of newer code or were made
redundant by newer code.) The decay was inevitable
given our reliance on conditional compilation and the
existence of several parallel model development
branches. Every once in a while, it was useful to go
through the model, remove the rot, consolidate par-
allel branches of development, and delete obsolete
simulation features.

Using Aint uncovered phenomena that would have
been missed without modeling for speculation effects.

Graphical output tools, while useful in under-
standing program behavior, have not been as univer-
sally useful in debugging model problems. To be
comprehensible to humans, graphical presentations
must focus on a fairly narrow window in time—a few
hundred cycles. Unfortunately, many of the really
interesting modeling bugs manifest themselves as
event sequences spanning hundreds or even thousands
of cycles. For these problems, text-based log files gen-
erated by the model’s debug trace facility have proven
indispensable.

W e are pleased with the range of experiments
our performance model supports. It allowed
us to conduct architectural explorations over

a large range of processor organizations. In the
process, we arrived at a chip organization that met
our design goal of building a better/faster/cheaper
microprocessor. ❖

Acknowledgments
We were not the sole or even primary contributors

to the performance modeling effort described here.
Michael Adler and Joel Emer designed the model’s
original framework. It was further developed by the
architecture team working on a future-generation
Alpha microprocessor, and was improved by the work
of our colleagues at Digital’s Cambridge Research
Laboratories. We also thank John Brown, George

May 1998 57

For most
experimental runs,

we ran the simulator
in skip mode, in

which the simulator
skips several

hundred
million instructions

into the application.

.

Chrysos, Tom Conte, Glenn Giacalone, Frank Fox,
and Doug Sanders for their encouragement and exten-
sive comments on early drafts of this article.

References
1. A. Srivastava and A. Eustace, “ATOM: A System for

Building Customized Program Analysis Tools,” Proc.
ACM SIGPLAN Conf. Programming Language Design
and Implementation, ACM Press, New York, 1994.

2. A. Paithankar, “AINT: A Tool for Simulation of Shared-
Memory Multiprocessors,” master’s thesis, Univ. of Col-
orado, Boulder, Colo., 1996.

3. J.E. Veenstra and R.J. Fowler, MINT Tutorial and User
Manual, Tech. Report 452, CS Dept., Univ. of Rochester,
Rochester, N.Y., 1993; revised August 1994.

4. K.N.P. Menezes, “An Accurate Sampling Method for
Fast Processor Simulation,” master’s thesis, Univ. of
South Carolina, 1995.

5. S. Laha, J.A. Patel, and R.K. Iyer, “Accurate Low-Cost
Methods for Performance Evaluation of Cache Memory
Systems,” IEEE Trans. Computing, Feb. 1988, pp.
1,325-1,336.

Matt Reilly helps develop the microarchitecture for
Digital Equipment’s next-generation, high-perfor-
mance Alpha microprocessor. He has held positions
in circuit design and architecture most recently as a
member of the 21264 development team. Reilly
received a BSEE from Virginia Polytechnic Institute
and State University, and an MSEE and a PhD in com-
puter engineering from Carnegie Mellon University.
He is a member of the IEEE.

John Edmondson is a DSP architect at Analog Devices
Inc., where he develops digital signal processors. He
led the architectural design of the Digital Alpha 21164
from the start of full-scale design through final prod-
uct qualification. Subsequent to that, he led the devel-
opment of a future high performance Alpha Risc
processor. Edmondson received a BSEE from MIT.
He is a member of the IEEE and the ACM.

Contact Reilly at Digital Equipment Corp., 334 South
St. SHR3-1/S30, Shrewsbury, MA 01545; matthew.
reilly@digital.com. Contact Edmondson at john.
edmondson@analog.com.

.

